
Introduction to
Computer Science

Overview of Discussion

 What is computer science?
 What is a computer?
 What can computers do?
 How do computers solve problems?
 What is computer science?

 Who invented computers?
 Conceptual computers
 Computing devices

Learning Objectives

 Define and use terminology
 Examples: computer, computer science,

algorithm, specification, correctness, efficiency,
von Neumann machine

 Distinguish between algorithms and non-
algorithms

 Know something about the history of
computers (up to 1950)

Which one is the computer?

Rock Calculator Television

 Modern Airplane Washing Machine Computer Workstation

Is it a Computer?

 What questions would
you ask?

 What experiments
would you run?

Is a rockrock a computer?

 Does not act or
process

 Takes no input and
produces no output

 Computers must be able to handle input and
output

Is a washing machinewashing machine a
computer?

 Input: dirty clothes
 Output: clean clothes
 Does not handle

information

 Computers input and output information

Is a television settelevision set a
computer?

 Input: information from
cables or radio waves

 Output: information as
sound and picture

 Does not process
information

 Computers process information by computing
new results and answering queries

Is a modern airplanemodern airplane a
computer?

 Input: information from
radio waves

 Output: manipulations
to the airplane

 Can only handle
specific information
necessary for flight
control

 Computers are general purpose because
they can perform many different tasks

Is an ordinaryordinary calculatorcalculator a
computer?

 Input: numbers and
mathematical operations

 Output: answer
 Handles any numeric task
 Cannot remember which

buttons are pressed

 Computers are programmable so they can
remember sequences of operations

Definition of a Computer

 a general purpose,
 programmable,
 information processor
 with input and output

How do computers solve
problems?
 Humans deconstruct problems into small

operations that a computer can carry out
 Writing an algorithm

 Solve a problem by computer requires
 State the problem clearly in a problem statement
 Solve the problem with an algorithm that gives

clear instructions
 Use a computing agent to carry out the

instructions

Solving the problem using an
Algorithm
 Algorithm – a clear sequence of instructions

for performing a task
 a well-ordered sequence
 of well-defined,
 feasible operations
 that takes finite time to carry out

Almost Algorithms

 To shampoo your hair
1. Rinse

2. Lather

3. Repeat

 To set the time on the
VCR

1. Open the front panel

2. Push the button

3. Set the hours, then the
minutes

 To write the Great
American Novel

1. Get paper and pencil

2. Sit down

3. Write word on paper

4. If novel is great, quit.
Otherwise, go back to
step 3.

Necessity of artificial
languages
 Problems with natural languages (like

English)
 Flexible
 Often ambiguous

 Computers use artificial languages with
precise meanings
 mathematical equations, music notation,

programming languages
 Programming languages define primitive

operations computing agents understand

Who invented computers?

 Computer science has roots in two fields
 Mathematics

 Alan Turing and the Turing machine (1930s)
 Developed theories with paper and pencil about how to

perform computations by hand

 Engineering
 John von Neumann and the von Neumann machine

(1940s)
 Showed how to build physical computers out of

electronic circuitry

Mathematical Roots

 Leibniz’s Dream (1600s)
 Can we find a universal language for

mathematical algorithms that will let us describe
and solve any problem?
 Reduce all reasoning to a fixed set of basic rules
 Determine truth or falsity of sentences by fixed rules for

manipulating sentences

 George Boole (1800s)
 Introduces binary notation of calculation

 Computers use binary system for logic and arithmetic

More on Theory

 David Hilbert (1928)
 Challenges the mathematical community to find

an infallible, mechanical method for constructing
and checking truth of mathematical statements
 Interested in an algorithm

 Alonzo Church, Alan Turing, and Kurt Gödel
construct arguments that there is no solution
to Hilbert’s Challenge
 Turing builds a conceptual computer for his

argument

The Turing Machine and the
Church-Turing Thesis
 Turing Machine

 Machine with a finite set of rules and an infinite
amount of “scratch paper” for computation
 No one has designed a physical computer that can do

more than a Turing machine
 Machine could not solve Hilbert’s problem

 Church-Turning Thesis
 The Turing Machine captures what we mean by

computational systems
 Is as powerful an any other mechanical computing

agent

Engineering Roots

 First step development of calculators
 Abacus – developed 5000 years ago in the Middle

East
 Pascaline – first mechanical calculator using

gears for calculation (1642)
 Charles Babbage’s Difference Engine –

conceptual design that used hundreds of gears to
compute mathematical functions (1820s)

Electronic Circuits

 Telegraph – uses electricity to convey letters
and transmit information quickly (1844)

 Hollerith Tabulating Machine – Uses
electricity and punch cards to calculate the
US census (1890)

 Z2 – used circuitry to compute arithmetic
operations (1930s)

Programmed Devices

 Jacquard Loom – weaves cloth using a pattern
specified using punch cards (1801)

 The Analytic Engine – conceptual design for a
machine consisting of a Mill, Store, Printer, and
Readers
 Led Ada Lovelace to define programming concepts such as

the subroutine

 ENIAC – one of the first programmable electronic
computers (1945)
 Programmed by routing cables and flipping switches

von Neumann Machine

 Store programs in electronic memory along
side the data (1943)
 Move and manipulate a program like data
 Enabled high-level programming languages

Input Central Processing
Unit (CPU)

Memory

Output

Machine Languages

 Only language computers directly understand
 “Natural language” of computer
 Defined by hardware design

 Machine-dependent
 Generally consist of strings of numbers

 Ultimately 0s and 1s
 Instruct computers to perform elementary operations

 One at a time
 Cumbersome for humans
 Example:

+1300042774
+1400593419
+1200274027

Assembly Languages

 English-like abbreviations representing elementary
computer operations

 Clearer to humans
 Incomprehensible to computers

 Translator programs (assemblers)
 Convert to machine language

 Example:
LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

High-level Languages

 Similar to everyday English, use common mathematical
notations

 Single statements accomplish substantial tasks
 Assembly language requires many instructions to accomplish

simple tasks
 Translator programs (compilers)

 Convert to assembly language
 Interpreter programs

 Directly execute high-level language programs
 Example:

grossPay = basePay + overTimePay

Programming Approaches

 Structured programming (1960s)
 Disciplined approach to writing programs
 Clear, easy to test and debug, and easy to modify
 Focus on what the program does

 Object Oriented programming
 Object is an entity characterized by a state and a

behavior
 state is encoded in the computer program as data
 behavior is encoded as methods

Objects
 Reusable software components that model real world

items
 Meaningful software units

 Date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, record objects, etc.

 Any noun can be represented as an object

 More understandable, better organized and easier to
maintain than structured programming

 Favor modularity
 Software reuse

 Libraries

	Introduction to Computer Science
	Overview of Discussion
	Learning Objectives
	Which one is the computer?
	Is it a Computer?
	Is a rock a computer?
	Is a washing machine a computer?
	Is a television set a computer?
	Is a modern airplane a computer?
	Is an ordinary calculator a computer?
	Definition of a Computer
	How do computers solve problems?
	Solving the problem using an Algorithm
	Almost Algorithms
	Necessity of artificial languages
	Who invented computers?
	Mathematical Roots
	More on Theory
	The Turing Machine and the Church-Turing Thesis
	Engineering Roots
	Electronic Circuits
	Programmed Devices
	von Neumann Machine
	Machine Languages
	Assembly Languages
	High-level Languages
	Programming Approaches
	Objects

